Humeral retractor EMG during quadrupedal walking in primates.

نویسندگان

  • Susan G Larson
  • Jack T Stern
چکیده

The mammalian humeral retractors latissimus dorsi, teres major and caudal parts of the pectoral muscles are commonly thought to contribute to forward impulse during quadrupedal locomotion by pulling the body over the supporting forelimb. While most electromyographic studies on recruitment patterns for these muscles tend to support this functional interpretation, data on muscle use in chimpanzees and vervet monkeys have suggested that the humeral retractors of nonhuman primates are largely inactive during the support phase of quadrupedal locomotion. In the chimpanzee and vervet monkey, in contrast to what has been documented for other mammals, the contributions of latissimus dorsi, caudal pectoralis major, and teres major during quadrupedal locomotion are restricted to slowing down the swinging forelimb in preparation for hand touchdown and/or retracting the humerus to help lift the hand off the substrate at the initiation of swing phase. Based on these results, it has been proposed that unique patterns of shoulder muscle recruitment are among a set of characteristics that distinguish the form of quadrupedalism displayed by nonhuman primates from that of other nonprimate mammals. However, two primate taxa is a limited sample upon which to base such far-reaching conclusions. Here we report on the activity patterns for the humeral retractors during quadrupedal walking in an additional eight species of nonhuman primates. There is some variability in the activity patterns for latissimus dorsi, caudal pectoralis major and teres major, both between and within species, but in general the results confirm that the humeral retractors of primate quadrupeds do not contribute to forward impulse by pulling the body over the supporting forelimb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.

Understanding how animals control locomotion in different behaviors requires understanding both the kinematics of leg movements and the neural activity underlying these movements. Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle activity in these behaviors is a first step toward understanding the neuronal basis for these differences. We report here the p...

متن کامل

Features of hand-foot crawling behavior in human adults.

Interlimb coordination of crawling kinematics in humans shares features with other primates and nonprimate quadrupeds, and it has been suggested that this is due to a similar organization of the locomotor pattern generators (CPGs). To extend the previous findings and to further explore the neural control of bipedal vs. quadrupedal locomotion, we used a crawling paradigm in which healthy adults ...

متن کامل

Activity patterns and timing of muscle activity in the forward walking and 4 backward walking stick insect

34 Understanding how animals control locomotion in different behaviors requires understanding 35 both the kinematics of leg movements and the neural activity underlying these movements. 36 Stick insect leg kinematics differ in forward and backward walking. Describing leg muscle 37 activity in these behaviors is a first step towards understanding the neuronal basis for these 38 differences. 39 4...

متن کامل

Bipedal and quadrupedal locomotion in chimpanzees.

Chimpanzees (Pan troglodytes) habitually walk both bipedally and quadrupedally, and have been a common point of reference for understanding the evolution of bipedal locomotion in early ape-like hominins. Here we compare the kinematics, kinetics, and energetics of bipedal and quadrupedal walking and running in a sample of five captive chimpanzees. Kinematics were recorded using sagittal-plane di...

متن کامل

Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes.

One of the great ongoing debates in palaeo-anthropology is when, and how, hominids acquired habitual bipedal locomotion. The newly adopted bipedal gait and the ancestral quadrupedal gait are most often considered as very distinct, with each habitual locomotor mode showing corresponding anatomical adaptations. Bonobos (Pan paniscus), along with common chimpanzees (P. troglodytes), are the closes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 210 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2007